Wald and Bayesian Confidence Intervals

Nearly every introductory textbook on statistics describes a technique for constructing a confidence interval for a population proportion based on the normal distribution approximation to the binomial distribution. This interval is commonly known as the Wald interval and is nearly universally used for obtaining confidence intervals for proportions. The Wald interval is based on the idea that as the sample size gets large, the binomial distribution may be approximated by the Gaussian (normal) distribution. Thus one might suspect that the Wald technique would provide adequate or very reliable confidence intervals (i.e., intervals that provide coverage nearly equal to the desired confidence level), especially as the sample size increases. In fact, this is not the case. It can be shown that the Wald interval displays erratic behavior with respect to coverage, even when sample sizes are quite large. Additionally, the behavior of these intervals is erratic even for values of near 0.5, which might seem counterintuitive.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


[1] L. D. Brown, T. T. Cai, and A. DasGupta, "Interval Estimation for a Binomial Proportion," Statistical Science, 16(2), 2001 pp. 101–133.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+