Chemical Reactions Described by the Lorenz Equations

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

This Demonstration analyzes the behavior of a chemical reaction scheme that is described by the Lorenz equations:

[more]

,

,

.

Parameters that lead to interesting behavior are ; the strange attractor that evolves from these equations spans both positive and negative values of and . If we interpret these symbols as representing concentrations of chemical species, they cannot be negative; a shift of the and axes can give new variables that are always positive [1]. Thus if we choose , , with , the equations describing the system become

,

,

, where , , and represent concentrations of chemical species. Using the values for the constants given above, the equations are

,

,

.

The reactions required to give the Lorenz equations are shown in section (1.7) of [1]. You can vary the time and the initial values of the species to see the evolution of the system. There is an unstable steady state at and an unstable fixed point at .

[less]

Contributed by: Clay Gruesbeck (January 2013)
Open content licensed under CC BY-NC-SA


Snapshots


Details

Reference

[1] D. Poland, "Cooperative Catalysis and Chemical Chaos: A Chemical Model for the Lorenz Equations," Physica D 65(1–2), 1993 pp. 86–99. doi:10.1016/0167-2789(93)90006-M.



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send