# Exact Solution for Rectangular Double-Well Potential

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram Player or other Wolfram Language products.

It is possible to derive exact solutions of the Schrödinger equation for an infinite square well containing a finite rectangular barrier, thus creating a double-well potential. The problem was previously approached using perturbation theory [1]. We consider the potential for and , for , and elsewhere. We set for convenience. Solutions of the Schrödinger equation have the form of particle-in-a-box eigenfunctions in three connected segments. For the unperturbed problem, the normalized eigenstates are with , for . The computations for the barrier problem are spelled out in the Details section. You can display eigenvalues and eigenfunctions up to . As the barrier increases in height and width, the and levels approach degeneracy. The linear combinations and then approximate the localized states and |R⟩, respectively.

[more]
Contributed by: S. M. Blinder (May 2013)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

Snapshot 1: unperturbed particle-in-a-box eigenstates

Snapshots 2, 3: for larger barriers, the and levels approach degeneracy, as do, to a lesser extent, the and levels

Even solutions, with , have the form

for (which fulfills the boundary condition ),

for (which is even about ),

for (which fulfills the boundary condition ).

Odd solutions, with , have the form

for (same as the even solutions), for (which is odd about ), for (which also fulfills the boundary condition ). In regions I and III, the energy eigenvalues follow from . In region II, we find . Since these energies must be equal, .

The connection formulas for the two region boundaries are most conveniently expressed in terms of the logarithmic derivatives. At , for example, , and analogously for and . This leads to the transcendental equations: for the even eigenstates, and for the odd eigenstates, .

## Permanent Citation