A Noncontinuous Limit of a Sequence of Continuous Functions

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

Consider a sequence of continuous real-valued functions of a real variable. The sequence converges pointwise on a set to a function if for each in , as . The limit is not guaranteed to be continuous; in this Demonstration the limit has a removable discontinuity. (To construct a limit that is discontinuous everywhere in , construct with spikes at all numbers that can be written in the form , where and are positive integers and .)

[more]

The limit of a uniformly convergent sequence of continuous functions is guaranteed to be continuous. Here "uniformly" means that in the ϵ- definition of the limit, the same must apply to every in . Pointwise convergence only requires an that may depend on .

[less]

Contributed by: George Beck (March 2011)
Open content licensed under CC BY-NC-SA


Snapshots


Details



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send