10217

# Chi-Squared Distribution and the Central Limit Theorem

This Demonstration explores the chi-squared distribution for large degrees of freedom , which, when suitably standardized, approaches a standard normal distribution as by the central limit theorem. In this Demonstration, can be varied between 1 and 2000 and either the PDF or CDF of the chi-squared and standard normal distribution can be viewed. You can also see the difference between the two distributions, which becomes useful for large .

### DETAILS

If are independent standard normal variables, then the random variable follows the chi-squared distribution with mean and standard deviation . Taking the standardized variable , the central limit theorem implies that the distribution of tends to the standard normal distribution as .
It can be seen that the chi-squared distribution is skewed, with a longer tail to the right. However, the PDF has maximum value at (for ), which is equivalent to , so the skew disappears in the limit as .

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.