9717

Soliton Trajectories According to Bohmian Quantum Mechanics

This Demonstration presents the motion of idealized particles inside a two-soliton using the Korteweg–de Vries equation (KdV): in space. The interaction of a two-soliton depends on the wave numbers p1 and p2 that are related via the dispersion relation to the speed of the each wave. In this case and are the velocities of the two solitary waves. The motion of the particles is governed by the current flow, which is derived from the continuity equation directly. The guidance equations are based only on the velocity, which is . With we get the starting points of possible trajectories inside the wave that are distributed according to the density of the wave and lead to single trajectories: . For the calculation an initial Gaussian distribution is chosen. The system is time reversible: .The concept is based on the causal interpretation of quantum mechanics developed by David Bohm.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+