9711

Soliton Trajectories of the Modified Korteweg-de Vries Equation (mKdV)

According to the Bohmian interpretation of quantum theory, often called today "causal de Broglie-Bohm theory", it is possible to allocate trajectories of idealized particles to waves. In this Demonstration the mKdV equation is studied to show how the velocity field guides the particles inside a two-soliton. From the mKdV, , the continuity equation is derived via , where is the velocity field and is the wave amplitude. As the value of the velocity is known at each time, the evolution of Bohmian trajectories is obtained by numerical integration for different initial positions. The two-soliton implies that the higher amplitude wave is narrower and faster than the wave with the minor amplitude. The trajectories of the individual solitons show that in the two-soliton collision the amplitude and the velocity are exchanged, rather than passing through one another. The system is time reversible: . On the left you can see the position of the particles, the wave amplitude (blue), and the velocity (red). On the right the graphic shows the wave amplitude and the complete trajectories in space. The velocity is scaled to fit.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The wave amplitude is taken from: A. Pekcan, "The Hirota Direct Method," master's thesis, Bilkent University, Turkey, 2005.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+